Detecting Human Movement by Differential Air Pressure Sensing in HVAC System Ductwork: An Exploration in Infrastructure Mediated Sensing
نویسندگان
چکیده
We have developed an approach for whole-house gross movement and room transition detection through sensing at only one point in the home. We consider this system to be one member of an important new class of human activity monitoring approaches based on what we call infrastructure mediated sensing, or "home bus snooping." Our solution leverages the existing ductwork infrastructure of central heating, ventilation, and air conditioning (HVAC) systems found in many homes. Disruptions in airflow, caused by human interroom movement, result in static pressure changes in the HVAC air handler unit. This is particularly apparent for room-to-room transitions and door open/close events involving full or partial blockage of doorways and thresholds. We detect and record this pressure variation from sensors mounted on the air filter and classify where certain movement events are occurring in the house, such as an adult walking through a particular doorway or the opening and closing of a particular door. In contrast to more complex distributed sensing approaches for motion detection in the home, our method requires the installation of only a single sensing unit (i.e., an instrumented air filter) connected to an embedded or personal computer that performs the classification function. Preliminary results show we can classify unique transition events with up to 75-80% accuracy.
منابع مشابه
Sensing by Proxy: Occupancy Detection Based on Indoor CO2 Concentration
Sensing by proxy, as described in this study, is a sensing paradigm which infers latent factors by “proxy” measurements based on constitutive models that exploit the spatial and physical features in the system. In this study, we demonstrate the efficiency of sensing by proxy for occupancy detection based on indoor CO2 concentration. We propose a link model that relates the proxy measurements wi...
متن کاملSpatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کاملSoc Nanobased Integrated Wireless Sensor System
Smart nanotechnology materials have been recently utilized in sensing applications. Carbon nanotube (CNT) based SoC sensor systems have potential applications in various fields, including medical, energy, consumer electronics, computers, and HVAC (heating, ventilation, and air conditioning) among others. In this study, a nanotechnology multisensory system was designed and simulated using Labvie...
متن کاملDemo Abstract: Powering Indoor Sensing with Airflows – A Trinity of Energy Harvesting, Synchronous Duty-Cycling, and Sensing∗
For indoor Wireless Sensor Networks (WSNs), as the conventional energy harvesting (e.g., solar) ceases to work in an indoor environment, the limited lifetime is still a threaten for practical deployment. We report in this demo a selfsustaining indoor sensing system. First of all, given the pervasive operation of heating, ventilation and air conditioning (HVAC) systems indoors, our system harves...
متن کاملDetecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor
Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...
متن کامل